A Novel Synthetic Receptor-Based Immunoassay for Influenza Vaccine Quantification
نویسندگان
چکیده
Vaccination is the most effective prophylactic method for preventing influenza. Quantification of influenza vaccine antigens is critically important before the vaccine is used for human immunization. Currently the vaccine antigen quantification relies on hemagglutinin content quantification, the key antigenic component, by single radial immunodiffusion (SRID) assay. Due to the inherent disadvantages associated with the traditional SRID; i.e. low sensitivity, low throughput and need for annual reagents, several approaches have been proposed and investigated as alternatives. Yet, most alternative methods cannot distinguish native hemagglutinin from denatured form, making them less relevant to antigenic analyses. Here, we developed a quantitative immunoassay based on the sialic acid binding property of influenza vaccine antigens. Specifically, we chemically synthesized human and avian influenza virus receptors analogues, N-acetylneuraminic acid-2,6-lactose and N-acetylneuraminic acid-2,3-lactose derivatives with an azidopropyl aglycon, using α-2,6- and α-2,3-sialyltransferases, respectively. The azido group of the two sialyllactose-derivatives was reduced and conjugated to mouse serum albumin through a squarate linkage. We showed that the synthetic α-2,6- and α-2,3-receptors selectively bound to human and avian-derived hemagglutinins, respectively, forming the basis of a new, and robust assay for hemagglutinin quantification. Hemagglutinin treated at high temperature or low pH was measured differentially to untreated samples suggesting native conformation is dependent for optimal binding. Importantly, this receptor-based immunoassay showed excellent specificity and reproducibility, high precision, less turnaround time and significantly higher sensitivity and throughput compared with SRID in analyzing multiple influenza vaccines.
منابع مشابه
Challenges and Perspectives toward Development of more Effective Influenza Vaccine
Influenza viruses continue to be a major health threat in human and bird populations. The improvements in formulation and production level of the current influenza vaccines are not sufficient to afford complete protection. The continuous antigenic drifts and emergence of endemic and zoonotic strains make influenza vaccine planning difficult. Concern about the emergence of new influenza pandemic...
متن کاملQuantification of Human Chorionic Gonadotropin by Bovine Serum Albumin Nanoparticles
Background and Aims: Some nanoparticles can be used in immunoassays to increase sensitivity. This study aimed to evaluate a novel nano-immunoassay based on bovine serum albumin nanoparticles (BSA NPs). Materials and methods: At first, the nanostructure was synthesized, and then applied as a tag in the nano-immunoassay. Then the concentration of β-subunit of human chorionic gonadotropin ...
متن کاملA Sensitive Neutralization Assay for Influenza C Viruses Based on the Acetylesterase Activity HEF Glycoprotein
Influenza C virus possesses specific neuraminate-O-acetylesterase as a receptor-destroying function. This enzymatic activity of the viral glycoprotein HEF (Hemagglutinin, esterase activity and fusion factor) can be visualized in situ by the use of distinct color substrates. Hereby the localization, as well as the quantity of synthesized HEF protein is detectable. We further developed the estera...
متن کاملImmunogenicity of Concentrated and Purified Inactivated Avian Influenza Vaccine Formulation
Avian influenza (AI) H9N2 is a low pathogenic virus subtype belonging to Orthomyxoviridae family. Given the prevalence of this subtype as an infectious agent in poultry industry, special attention has been always directed toward the development of vaccine production against this infection. The vaccine of this infection is produced by killing the virus and using a mixture of inactivated antigen ...
متن کاملPhylogenetic Comparison of Influenza Virus Isolates from Three Medical Centers in Tehran with the Vaccine Strains during 2008-2009
Background: Influenza virus is a major infectious pathogen of the respiratory system causing a high degree of morbidity and mortality annually. The worldwide vaccines are decided and produced annually by World Health Organization and licensed companies based on the samples collected from all over the world. The aim of this study was to determine phylogenecity and heterogenecity of the circulati...
متن کامل